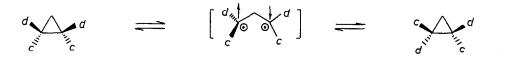

KINETICS OF THE CIS-TRANS ISOMERISATION OF CYCLOPROPANES : comparison between capto-dative and di-capto radical stabilisation 1,2


R. Merényi, A. De Mesmaeker and H.G. Viehe^{*} Université de Louvain, Laboratoire de Chimie Organique Place Louis Pasteur, 1 B-1348 LOUVAIN-LA-NEUVE Belgium

<u>Summary</u>: Capto-dative (*cd*) (c = CN, d = OR, SR, NR₂) compared to di-capto substitution (c = CN, c' = COOR) was found to be more efficient in lowering the activation energy of cis-trans isomerisation of cyclopropanes.

Since the formulation of the concept of capto-dative (cd) radical stabilisation 3 we have published our first quantitative evaluations 4,5,6 , based on cis-trans isomerisation of cyclopropanes : we reported that <u>1c</u> isomerises readily at 50°C with a very low activation energy (=26.9Kcal/mole). In this paper cd substitution is extended to amino- and methoxy nitrile and compared to dicapto substitution.

cd-Substitution stabilises particularly well the dí-radical transition state 7 of the isomerisation process.

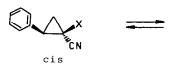
 $d = SR, OR, NR_2$ c = CN, COOR

The effect of a methoxy (in <u>1a</u>) or of a morpholine group (in <u>2b</u>), in the cdcouple with a nitrile, is comparable to that of SR groups (in <u>1c</u> and <u>2a</u>). In
contrast two geminal acceptor groups (CN and COOCH₃ in <u>1e</u>) stabilise the transition state to a lesser extent.

The kinetic data for the cis-trans isomerisation of two sets of compounds <u>la-e</u> and <u>2a-b</u> were determined in two different solvents⁸. The results are presented in tables I and II. No solvent polarity effect was detected using CDCl₃ and nitrobenzene or xylene-D10 and CD₃CN respectively. Any zwitterionic character in the transition state^{7a} can thus be excluded.

	x s+ N C CN cis	NC x ^v CN trans	
SOLVENT : CDC13	$E_{a} (Kcal/mole)$ $C \rightarrow t = -1$ $(A_{c \rightarrow t} sec^{-1})$	$E_{a_{t} \rightarrow c} (Kcal/mole)$ $(A_{t \rightarrow c} sec^{-1})$	K=[cis]/[trans] (T°C) ⁹
CH30 NC ^W CN	24.1 ± 0.4 (6.1 x 10 ¹⁰)	$\frac{24.2 \pm 0.5}{(1.0 \times 10^{10})}$	7 (58-110)
	27.0 ± 0.4 (6.3 x 10 ¹³)	$\frac{26.7 \pm 0.7}{(7.2 \times 10^{12})}$	5.3 (37 - 64)
$O = S \qquad S = (1c)^{10}$	26.9 ± 1.0 (1.1 x 10 ¹³)	$\frac{26.9 \pm 1.1}{(1.1 \times 10^{12})}$	10 (50-95)
$\sum_{N \in \mathbb{C}^{N}} s + (\underline{1d})$	$\frac{28.2 \pm 1.5}{(4.2 \times 10^{12})}$	$\frac{29.4 \pm 1.1}{(4.2 \times 10^{12})}$	4.6 (100-138)
CH300C	31.7 ± 0.8 (3.2 x 10 ¹³)	31.7 ± 0.7 (1.2 x 10 ¹²)	4.8 (118-150)

TABLE I


In both series the cis \rightarrow trans and trans \rightarrow cis isomerisations have nearly the same activation energy; steric factors appear not to be predominant in these systems. This is in full agreement with X-ray analysis ¹¹ and our previous report ⁴. Indeed if steric factors of X in <u>1a</u> to <u>1e</u> were important, a different sequence of activation energies could be expected.

2766

The kinetic results suggest a similar stabilisation for
$$cd$$
 radicals
 $R = C$ and $R = C$, and for the $R = C$ radical.
 CN CN

Although chlorine is a poor donor and the least efficient radical stabilising substituent considered here, the activation energy for $\underline{1d}$ (c = CN, d = Cl) is still lower than for di-capto substitution ($\underline{1e}$, c = CN, $c' = COOCH_2$).

From the data for 2a and 2b (Table II) we can conclude that t-butyl thio and morpholine substituents in a cd couple afford a similar degree of stabilisation in the diradical transition state.

SOLVENT : xylene-D10	E(Kcal/mole) ac →t	E (Kcal/mole) K=[cis]/[trans]
	$(A_{c \rightarrow t} sec^{-1})$	
$C_{s+(2a)}$	34.3 + 0.8	34.0 <u>+</u> 1.9 3.6
CN	(1.0×10^{13})	(2.1×10^{12}) (155-187)

$$\begin{array}{c|c} & & 34.2 \pm 0.1 \\ & & & (2b) \\ & & & (1.4 \times 10^{13}) \end{array} \\ \end{array} \begin{array}{c} 34.1 \pm 0.1 \\ (6.0 \times 10^{12}) \end{array} \begin{array}{c} 1.9 \\ (150-187) \end{array}$$

TABLE II

The correlation between radical stabilisation energies by substituent effect and the activation energies of cyclopropane geometrical isomerisation is already established 2,7 . However, small variations of 1-2 Kcal/mole in the activation energies by changing only one substituent X out of three or four could be justified by differences in the ground state energies ; but there is no obvious reason to expect ground state destabilisation of four or of seven Kcal/mole replacing the ester group of 1e, by a chlorine 1d or a methoxy 1a.

In conclusion our results indicate the following order of radical stabilisation :

isation: $d-\dot{C}-CN > Ph-\dot{C}-CN > Cl-\dot{C}-CN > ROOC-\dot{C}-CN > Ph-\dot{C}-H$ $d = OR, SR, NR_2$ This sequence does not correspond to the simple additivity of individual capacities 12 of substituents to stabilise an adjacent radical and underlines the importance of the cd effect.

In quantitative terms the comparison of the E_a 's for 1,1,2,2-tetramethylcyclopropane (E_a = 54.4 Kcal/mole)¹³ and of bis-*cd* substituted cyclopropanes <u>1a</u> and <u>1c</u> (Ea=24-27 Kcal/mole) permits the estimation of 14-15 Kcal/mole for the *cd* radical stabilisation energy, which is even higher than for diphenyl substitution (cf. 1,2-Di(p-cyanophenyl)-1,2-diphenylcyclopropane E_a = 30.4 Kcal/mole⁵).

<u>Acknowledgments</u> : We thank the "Ministère de la Programmation Scientifique" for its financial support.

REFERENCES

- Capto-dative substituent effects, part 14 Part 13 : Z. Janousek, S. Piettre, F. Gorissen-Hervens and H.G. Viehe, J. Organometal. Chem. (accepted).
- 2. Part of Ph.D. Thesis of A. De Mesmaeker, Louvain-la-Neuve, Belgium.
- Ja) L. Stella, Z. Janousek, R. Merényi, H.G. Viehe, Angew. Chem. <u>90</u>, 741 (1978);
 Angew. Chem. Int. Ed. Engl. <u>17</u>, 681 (1978);
 b) H.G. Viehe, R. Merényi,
 L. Stella, Z. Janousek, Angew. Chem. <u>91</u>, 982 (1979);
 Angew. Chem. Int.Ed.
 Engl. <u>18</u>, 917 (1979)
- 4. A. De Mesmaeker, L. Vertommen, R. Merényi, H.G. Viehe, Tetrahedron Lett. 23, 69 (1982).
- See also for p-substituted tetraphenyl cyclopropanes : D.R. Arnold, M. Yoshida, J. Chem. Soc. Chem. Comm. <u>1981</u>, 1203 ; D.R. Arnold, D.D.M. Wayner, M. Yoshida, Can. J. Chem. 60, 2313 (1982).
- 6. Other quantitative studies on *cd* radical stabilisation :
 - a) R. Merényi, V. Daffe, J. Klein, W. Masamba, H.G. Viehe, Bull. Soc. Chim. Belge <u>91</u>, 456 (1982); b) D.L. Kleyer, R.C. Haltiwanger, T.H. Koch, J. Org. Chem. <u>48</u>, 147 (1983); c) R. Louw, J.J. Bunk, Recl. Trav. Chim. Pays-Bas <u>102</u>, 119 (1983); d) H.-G. Korth and R. Sustmann, R. Merényi and H.G. Viehe J. Chem. Soc. Perkin Trans. II 1983, 67.
- 7. a) A. Chmurny, D.J. Cram, J. Am. Chem. Soc. <u>95</u>, 4237 (1973) ; b) W. von E. Doering, G. Horowitz, K. Sachdev, Tetrahedron 33, 273 (1977).
- 8. Synthesis of the new cyclopropanes will be reported later ; the cis and trans isomers have been separated by column chromatography. The kinetics were followed by 1 H-NMR on a Varian XL-200 spectrometer, on 0.I-0.2 molar solutions, and are first order in each case. Equilibria and rate constants have been determined for at least four different temperatures in each solvents.
- 9. The K-values given here are averages with the appropriate temperature in parentheses.
- 10. Optimised value from ref. 4.
- 11. S. Wu, B. Tinant, J.P. Declercq, M. Van Meerssche, unpublished results.
- 12. See for ex. : a) J.W. Timberlake, A.W. Garner, M.L. Hodges, Tetrahedron Lett. <u>1973</u>, 309 ; b) M.F. Dube, J.W. Timberlake, Tetrahedron <u>36</u>, 1753 (1980);
 c) S. Dinçtürk, R.A. Jackson, J. Chem. Soc. Perkin II <u>1981</u>, 1127
- 13. J.A. Berson, J.M. Balquist, J. Am. Chem. Soc. 90, 7343 (1968).

(Received in France 18 April 1983)